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Introduction and Motivations

This work focuses on organ seg-
mentation in abdominal CT-scans
with Deep Convolutional neural
Networks (ConvNets)

Problem
▶ training deep ConvNets requires large amount of data
▶ the annotation process is extremely time consuming and requires

high qualified professionals
▶ clinical experts focus on specific organs or anatomical structures

Olivier Petit Visible Patient and le CNAM
SMILE, a deep learning method for training ConvNets with partially annotated data for the task of semantic segmentation.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction and motivations SMILE and SMILEr methods Experimentations Conclusion

Introduction and Motivations
Example
Our dataset from VP/IRCAD is partially annotated

Problem
How can we train a ConvNet ?
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SMILE method

SMILE: Semantic segmentation with MIssing Labels and
ConvNEts [Petit et al., 2018]
The main ideas:

▶ Learning only with good annotations, and ignore uncertain ones
▶ SMILEr → semi-supervised method with reannotation

Hypothesis
▶ If there is an annotation for an organ, it’s complete in the entire

volume.
▶ All organs are visible in the 3D image.

Olivier Petit Visible Patient and le CNAM
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SMILE method
Handling missing annotations

▶ The first step is to consider K binary classifiers instead of 1
multiclass (K+1) classifier (replacing the softmax activation by a
sigmoid)

▶ We introduce an ambiguity map W; wc ∈ {0, 1} to ignore
ambiguous annotations

Olivier Petit Visible Patient and le CNAM
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SMILE method

Loss function
Each binary classifier has a binary cross-entropy loss :

Lk(ŷk, y∗k) = −(y∗k log(ŷk) + (1− y∗k) log(1− ŷk))

The final loss is the aggregation of the K losses :

L(ŷ, y∗) =
K∑

k=1
wk Lk(ŷk, y∗k)

Olivier Petit Visible Patient and le CNAM
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SMILEr incremental self-supervision and relabeling
Reannotation of the missing labels through self-supervision : curriculum
learning strategy [Bengio et al., 2009].
Procedure
Initialization with SMILE (easy examples);
for t ← 1 to T do

Select γt = t
Tγmax top scoring pixels among ŷ+i ;

Train with the new labels (hard examples);
end

Olivier Petit Visible Patient and le CNAM
SMILE, a deep learning method for training ConvNets with partially annotated data for the task of semantic segmentation.
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Experimentations
Experimental setup

Model
FCN based on a ResNet-101 [He et al., 2016].
We train:

▶ A baseline model on the raw data
▶ The same model with the SMILE and SMILEr method

Data
Initial data: 72 CT-scans (complete liver, pancreas and stomach)
Training data: we remove α% of each annotation α = {0→ 100%}
Split: 80% training; 20% testing

Olivier Petit Visible Patient and le CNAM
SMILE, a deep learning method for training ConvNets with partially annotated data for the task of semantic segmentation.
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Experimentations
Results

SMILEr α = 70% ∼ baseline α = 0%
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Experimentations
Results

SMILEr: improvements are more pronounced for small organs like the
pancreas and the stomach
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Qualitative results
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Conclusion

We proposed a method for training deep ConvNets on partially annotated
data.

▶ We showed that SMILEr can achieve comparable performances to a
model trained with complete annotations with only 30% of the labels

Perspectives
▶ Training better FCN architectures (e.g. U-Net

[Ronneberger et al., 2015])
▶ Improving the pixel selection for SMILEr (e.g. Bayesian uncertainty

criterion [Gal and Ghahramani, 2016])
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Appendix

Analyzing the TP/FP ratio
▶ βk = voxel ratio for organ k
▶ α = unannotated organ ratio

▶ Baseline : we learn with all the TN but also all the FN
▶ SMILE : we learn with no FN but we have removed some TN

Because the number of background labels is high, removing some of the
TN have no incidence on the training.
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